Latest USP Initiatives: Monographs, General Chapters, and Compounding

Jim Ponto, MS, RPh, BCNP
Disclosures

Volunteer member on several USP Expert Committees and Expert Panels associated with radiopharmaceutical General Chapters and drug monographs

This presentation is not endorsed by the USP, nor does it represent the views or opinions of the USP
Topics

• Background
• Issues with radiopharmaceutical monographs
• New format for radiopharmaceutical monographs
• Recent activities – general chapters
• Radiopharmaceutical compounding
Background

• USP is a non-governmental agency that provides standards of identity, strength, quality, and purity of medications, excipients, and dietary supplements

• These standards are described in General Chapters (common tests and assays, methods, information) and in Monographs for individual drug substances and drug products (specific tests and acceptable limits)

• Typically, monographs are created only after FDA approval of drug product
Background (cont’d)

• Development and revision of monographs are assigned to one of several Expert Committees (ECs)
• ECs consist of volunteers with expertise in a given area and are supported by USP scientific staff
• For the 2015-2020 cycle, radiopharmaceuticals are assigned to Chemical Medicines Monographs 4 Expert Committee (CHM4 EC)
• Expert Panels (EPs) may be created to assist the EC when additional expertise is needed
Typical Creation of a Monograph

• A sponsor (typically the manufacturer) provides draft standards and supporting analytical data

• USP’s scientific staff and volunteer experts review this input, conduct analytical testing in USP labs if necessary, and develop a proposed monograph

• The proposed monograph is published in *Pharmacopeial Forum (PF)* for public review and comment
Typical Creation of a Monograph (cont’d)

• The proposed monograph is revised, as appropriate, based on public comments and then voted upon by the assigned Expert Committee

• The final monograph is published as official text in the USP-NF

• Revisions to existing monographs follow a similar process, but may undergo an accelerated process in certain circumstances
Issues with Radiopharmaceutical Monographs

• Nearly all radiopharmaceutical monographs need to be ‘modernized’ to the new USP format and style
• Some monographs, especially those for older drugs and PET drugs, were developed in the absence of sponsors’ supporting data and prior to FDA approval
• USP labs are not licensed to handle radioactive materials, so typical testing cannot be performed to verify methods
• Reference standards do not exist for radioactive active ingredients
Issues with Radiopharmaceutical Monographs

• Many recently marketed radiopharmaceuticals do not yet have a monograph (the innovator is often reluctant to share proprietary information prior to generic competition)

• Monographs don’t exist for marketed non-radioactive ‘kits’ (e.g., DOTATATE kit)
Radiopharmaceutical Expert Panel

• Established in early 2016 under CHM4 EC

• Members:
 Corinne Bensimon David Pipes
 Jonathan Fitzsimmons Jim Ponto*
 Umesh Gangadharmath Ravi Ravichandran†
 Ravi Kasliwal‡ Kara Weatherman
 Thijs Kroon Martin Williamson*
 Adrian Nunn Steve Zigler*

* Member CHM4 EC
† USP staff
‡ FDA representative
Initial Tasks

• Compile list of radiopharmaceutical monographs (N=75 current and pending)
• Prioritize tasks – start with ‘low-hanging fruit’
• Review each radiopharmaceutical for marketing status in U.S. and other countries
• Recommend deletion of monographs for radiopharmaceuticals that are no longer relevant
 – Each will be published in PF for public comment before removal
• Identify sponsors for monographs to be maintained and revised
Standard Monograph Format and Style: Radiopharmaceuticals Don’t Fit Well

• USP guideline for submission of monographs

• Some test methods for pharmacologic drug masses may not be appropriate for radiopharmaceuticals
 – e.g., infrared/ultraviolet spectroscopy, liquid chromatography, gas chromatography

• Certain tests for radiopharmaceuticals are not described in this guideline
 – e.g., radioactivity, radionuclidic purity, radiochemical purity
Modified Monograph Format and Style for Radiopharmaceuticals

• TITLE (e.g., Fludeoxyglucose F 18 Injection)
• DEFINITION
 – Chemical information (e.g., chemical name)
 – Other important characteristics (e.g., sterile)
 – Amount (e.g., NLT x % and NMT x % of the labeled amount expressed in MBq (mCi)/mL at the time of calibration)
 – Added substances (e.g., may contain buffering agents, preservatives, stabilizing agents or sodium chloride)
 – Specific activity (e.g., does not contain added carrier)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

• IDENTIFICATION
 – Radionuclidic Identity (cite <821>)
 • Analysis (e.g., determine half-life or emission energy spectrum)
 • Acceptance Criteria (e.g., half life is x – y min; major photopeak energy is x KeV)
 – Radiochemical Identity
 • Analysis (e.g., comparison to chemical standard)
 • Acceptance Criteria (e.g., NLT x % and NMT x %)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

– ASSAY (cite <821>)

– Radioactivity Concentration (Strength)
 • Analysis (e.g., determine MBq (mCi)/mL)
 • Acceptance Criteria (e.g., x % - y % at the time indicated on the label)
• PURITY

 – Radionuclidic Purity (cite <821>)
 • Analysis (e.g., collect emission energy spectrum and
determine amount of each radionuclide, decay-correct
to expiration time)
 • Acceptance Criteria (e.g., NLT x % corresponds to the
intended radionuclide)

 – Radiochemical Purity
 • Analysis (e.g., radiochromatography method)
 • Acceptance Criteria (e.g., NLT x %)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

• IMPURITIES
 – Radionuclidic Impurities (cite <821>)
 • Analysis (e.g., collect emission energy spectrum and determine amount of each radionuclide, decay-correct to expiration time)
 • Acceptance Criteria (e.g., NMT x % of the radioactivity decay-corrected to time of expiration)
 – Radiochemical Impurities
 • Analysis (e.g., radiochromatography method)
 • Acceptance Criteria (e.g., NMT x %)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

• IMPURITIES (cont’d)
 – [Specific Identified Chemical Impurities] (e.g., related compounds that have a Reference Standard; residual solvents such as acetonitrile and ethanol)
 • Analysis (e.g., chromatography method)
 • Acceptance Criteria (e.g., NMT x microgram/mL; or NMT x %)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

• Specific Tests
 – Appearance (e.g., clear, colorless, free from visible particulates)
 – pH (e.g., pH is $x - y$ using short-range pH indicator paper)
 – Bacterial Endotoxins Test (cite <85>) (e.g., NMT 175/V USP endotoxin units/mL where V is the maximum administered total dose in mL at the expiration time)
 – Sterility Test (cite <71>) (state exceptions such as sample size or time delay before starting the test)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

• Additional Requirements

 – Packaging and Storage (e.g., single-dose or multiple-dose vial; adequately shielded; store at controlled room temperature)

 – Labeling (e.g., date and time of calibration; radioactivity concentration in MBq (mCi)/mL at calibration; total volume or total radioactivity at calibration; expiration date and time; name and quantity of any added preservative or stabilizer; make dosage calculations with correction for radioactive decay; the radionuclide’s half-life; “Caution – Radioactive Material”; do not use if cloudy or if it contains visible particulate matter)
Modified Monograph Format and Style for Radiopharmaceuticals (cont’d)

• USP Reference Standards (cite <11>)
 – List (e.g., drug substance RS; drug-related compound RS)
First Monographs Revised

• Fludeoxyglucose F 18 Injection
• Ammonia N 13 Injection
• Proposed revisions of both monographs recently published in Pharmacopeial Forum
 \textit{PF 43(3)} May-Jun 2017
• Comment period ends July 31, 2017
Summary - Monographs

• Revising radiopharmaceutical monographs is a slow process, but a foundation has been laid to allow progress

• **Need:** sponsors for individual radiopharmaceutical products, especially for supporting documentation of analytical methods and results

• **Need:** public comment on proposed new and revised monographs published in *PF*
General Chapters

In the past year, finalization and inclusion in USP 40:

- <821> Radioactivity
 (USP 15, rev USP 19; complete rewrite)
- <1821> Radioactivity – Theory and Practice
 (new informational chapter)
- <1015> Automated Radiochemical Synthesis Apparatus
 (USP 29; delete in USP 40)
- <1823> Positron Emission Tomography Drugs -Information
 (new informational chapter)

In Process:

- <823> Positron Emission Tomography Drugs for Compounding, Investigational, and Research Uses
 (USP 23, rev USP 35; re-formatted for style, no change in content)
Radiopharmaceutical Compounding

<795> *Pharmaceutical Compounding – Nonsterile Preparations*

- does not apply to radiopharmaceuticals

<797> *Pharmaceutical Compounding – Sterile Preparations*

- contains a short section on radiopharmaceuticals but lacks sufficient details to fully elucidate important differences for radiopharmaceuticals
Radiopharmaceutical Compounding in PET

• Dispensing of doses from a manufactured product

• Dilution of manufactured product prior to dispensing (e.g., FDG)

• Preparation on Ga-68 DOTATATE

• Perhaps other activities in the future
Compounding of Radiopharmaceuticals

- Similar to sterile compounding of conventional drugs
e.g., aseptic practices, environmental facilities

- Also similar to hazardous drug compounding
e.g., prevention and control of contamination

- Unique aspects
 - Radiation protection practices (time, distance, shielding)
 - Supplies: lead shields, absorbent contamination pads
 - Equipment: radioactivity/radiation instruments/monitors
Problems

• Several different definitions of “compounding”
 – Traditional pharmacy extemporaneous compounding
 – State boards of pharmacy
 – FDA
 – USP
 – Professional organizations, standards of practice
 – Accreditation organizations
Problems (cont’d)

• 503A safe harbors for pharmacy compounding “do not apply to ... radiopharmaceuticals.” [DQSA 2013]
 – FDA draft guidance document for radiopharmaceutical compounding (12/29/2016) is still undergoing public comment
 – Currently, different interpretations by different inspectors

• Related issues
 – Nearly 90% radiopharmaceutical doses are prepared in commercial nuclear pharmacies and transported to hospitals and clinics
 – Crossing state lines (e.g., New York City, Washington D.C.)
 – Patient name on each dose
Problems (cont’d)

 – specifically includes “compounded or repackaged radiopharmaceuticals”
 – The descriptive list of *Insanitary Conditions in a Sterile Operation* includes several items that may be problematic for radiopharmaceuticals
SNMMI White Paper

Fall 2016 –SNMMI COR developed a white paper entitled *USP Public Standards for Compounded Sterile Radiopharmaceuticals: Recommendations from SNMMI*

Three recommendations from the white paper:

- Delineate common practices that are defined as sterile compounding within the practice of nuclear pharmacy
- Create a public standard for the preparation, compounding, and dispensing of sterile radiopharmaceuticals with the practice of nuclear pharmacy [i.e., create a new general chapter]
- Reinstate an expert committee dedicated to all standards for radiopharmaceuticals [i.e., chapters and monographs]

Previous Related Work by USP

• 2000-2005 Radiopharmaceuticals and Medical Imaging Drugs (RMI) Expert Committee proposed, and created a draft of, a new general chapter: <1017> Radiopharmaceutical Quality Assurance and Compounding.

• But: it was never published in PF; Frank Barletta retired in 2003, the committee turned its focus to PET, and chapter <1206> Sterile Preparations – Pharmacy Practices was on its way to becoming <797>
Summary

• Preparation, compounding, and dispensing of sterile radiopharmaceuticals involves unique safety considerations (radiation protection practices) and involves special equipment (lead shielding, radiation detectors) that may necessitate some compromises in aseptic handling practices.

• A separate USP chapter on Preparation, Compounding, and Dispensing of Sterile Radiopharmaceuticals would serve the profession well in defining and describing standards for these activities, especially in relationship with the FDA Draft Guidance on Compounding and Repackaging of Radiopharmaceuticals
USP Stakeholders Workshop on Radiopharmaceutical Compounding

Held at USP HQ on Feb 1, 2017

Invited participants included representatives from:
 • Chemical Medicines Monographs 4 Expert Committee
 • Compounding Expert Committee
 • nuclear pharmacists in hospital, commercial, and academic settings
 • FDA
 • SNMMI COR (to present the White Paper)
 • USP staff

Most participants endorsed a separate chapter
Proposed New General Chapter

<825> Compounding - Radiopharmaceuticals

• The Compounding Expert Committee and USP staff agreed that creation of a new chapter was appropriate.

• Call for candidates for Expert Panel: http://callforcandidates.usp.org/node/4636

• Very aggressive timeline – draft chapter to be published in the Nov-Dec 2018 PF for public comment.
Key Issues Page: Standards for Radioactive Articles in USP-NF

THANK YOU

QUESTIONS?